
International Journal of Heat and Mass Transfer 47 (2004) 3909–3925

www.elsevier.com/locate/ijhmt
Resolution of linear inverse forced convection problems
using model reduction by the Modal Identification

Method: application to turbulent flow in parallel-plate duct

Manuel Girault *, Daniel Petit *

Laboratoire d’Etudes Thermiques, U.M.R. C.N.R.S. n� 6608, Universit�e de Poitiers, ENSMA, T�el�eport 2, 1 avenue Cl�ement Ader,
B.P. 40109, 86961 Futuroscope Cedex, France

Received 3 September 2003; received in revised form 10 February 2004
Abstract

Inverse Heat Convection Problems have received attention only recently. They usually involve the use of a high

order model corresponding to the spatial discretization of the domain. In this numerical study, the possibility to quickly

solve such a problem with a low order model is analysed. The proposed method can be applied to any forced convection

problem, whatever the geometry, as far as it is linear. Starting from a Detailed Model (DM) of the system, the Modal

Identification Method is applied to build a Reduced Model (RM), which can be used to solve the inverse problem. The

inversion procedure is sequential and requires no iterations. The function specification method is used to stabilize the

inverse problem. An illustrative application is given. Turbulent forced convection is considered, with a hydrodynam-

ically fully developed, thermally developing, incompressible, turbulent flow of a newtonian and constant property fluid

inside a parallel-plate duct. Axial conduction in the flow is neglected. Two wall heat flux densities, varying with time,

are estimated from the knowledge of simulated transient temperature measurements inside the fluid. When solving the

inverse problem with RM instead of DM, a drastic reduction of computing time is obtained (with a reduction factor up

to 11,000 in the present study), without significant loss of accuracy. Effects of functional form of the unknowns, sensors

number and position, measurement error, on the accuracy of estimates are examined.

� 2004 Elsevier Ltd. All rights reserved.

Keywords: Forced convection; Modal identification; Reduced Model; Inverse method; Estimation of boundary conditions; Sequential

algorithm; Future Time Steps
1. Introduction

Many available studies related to heat convection are

concerned with the direct problem, that is: having a

mathematical model and knowing boundary conditions,

one searches to compute the temperature field over the

whole domain. Applications in which thermophysical

properties, geometric characteristics or boundary con-
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ditions are unknown, but temperature measurements are

locally available, belong to inverse problems: from the

knowledge of experimental data, one searches to esti-

mate the unknowns, boundary conditions for instance.

While inverse heat conduction problems have been

studied for several decades, inverse heat convection

problems have received attention only recently. The first

published works seem to appear at the end of the 1980s.

Moreover, whereas numerous direct convection prob-

lems, dealing with forced convection as well as mixed or

natural convection, have led to extensive theoretical,

experimental and numerical researches, investigations in

the field of inverse convection remain quite rare. They

principally consist in numerical studies, connected with
ed.
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Nomenclature

AðN ;NÞ state matrix for DM
BðN ; pÞ input matrix for DM

b channel half-height, m

bD, bRðqÞ vectors containing the past of the system
for DM and RM respectively

Cðq;NÞ output matrix for DM

CaðN ;NÞ matrix of thermal capacitances
CD, CRðq; pÞ matrices of dynamic sensitivities for

DM and RM respectively

Cp specific heat, J kg�1 K�1

c� solid-to-fluid thermal capacitance ratio

Dh hydraulic diameter, m

e wall thickness, m

F ðn; nÞ diagonal state matrix for RM

Gðn; pÞ input matrix for RM

Hðq; nÞ output matrix for RM

KðN ;NÞ matrix of thermal conductances
k time index

L channel length, m

‘ dimensionless channel length

n RM order

N DM order

nf number of Future Time Steps

nt number of time steps

Nn number of nodes in the axial direction

Ng number of nodes in the transverse direction

p dimension of input vector W
Pe P�eclet number
Pr Prandtl number

Prturb turbulent Prandtl number

q dimension of output vector Y
Re Reynolds number based on mean velocity

Sðq; pÞ static matrix (RM)

T temperature, K

t time, s

U velocity, m s�1

Um fluid bulk mean velocity, m s�1

u dimensionless velocity ¼ U=Um
W ðsÞ, _W ðsÞðpÞ input vector function, its derivative

with respect to time

X ðsÞ, _X ðsÞðnÞ state vector function for RM, its

derivative with respect to time

x axial coordinate, m

Y ðsÞðqÞ output vector function

y transverse coordinate, m

Abbreviations

DM Detailed Model

FTS Future Time Steps

MIM Modal Identification Method

RM Reduced Model

Greek symbols

a fluid thermal diffusivity, m2 s�1

aeff effective diffusivity for heat, m2 s�1

aturb turbulent diffusivity for heat, m2 s�1

DT measurement error, K

DTref characteristic temperature difference, K

Dt time step, s

Ds dimensionless time step

eeff dimensionless effective diffusivity for heat

Un, Us dimensionless applied heat flux densities on

north and south walls

g dimensionless transverse coordinate ¼ y=b
un, us applied heat flux densities on north and

south walls, Wm�2

k thermal conductivity, Wm�1 K�1

m fluid kinematic viscosity, m2 s�1

mturb turbulent viscosity, m2 s�1

h dimensionless temperature

hðsÞ, _hðsÞðNÞ vector function of temperatures, its

derivative with respect to time

WðNÞ vector containing thermal inputs

q density, kgm�3

r� standard deviation of added noise, K

r dimensionless standard deviation of added

noise

s dimensionless time

n dimensionless axial coordinate

Superscripts

^ estimated value

� derivation with respect to time

T transposition sign

Subscripts

f relative to fluid

in inlet

s relative to solid
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internal flows and the estimation of thermal boundary

conditions from temperature measurements, in the flow

or at a wall.

One of the first complete studies is concerned with a

steady free convection flow in a 2D parallel-plate duct

[1]. Temperature and heat flux density spatial distribu-
tions at a wall are estimated from measurements at the

opposite wall, using the function specification method

[2].

A few inverse problems of natural convection (in

cavity) have been explored. These problems, nonlinear

in essence, require iterative methods to perform the
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inversion. The conjugate gradient method coupled with

the resolution of direct, sensitivity and adjoint problems

[3,4], is mostly employed. It was used for the estimation

of space and time varying wall heat flux density [5] from

measurements at the opposite wall. The identification of

wall heat flux density spatial distribution from temper-

ature measurements in the fluid, has been performed,

either with immovable sensors [6] and mobile ones [7]. In

order to reduce the size of direct, sensitivity and adjoint

problems to be solved at each iteration of the inverse

procedure, the Karhunen–Lo�eve–Galerkin method [8]
has been used to build a low dimensional natural con-

vection model for the estimation of a time varying heat

source intensity [9]. Conjugate gradient method has also

been used to estimate wall heat flux density from tem-

perature measurements in the fluid, for different values

of Rayleigh number [10]. A sequential approach based

on Kalman filter has also been employed to identify a

time varying heat source intensity, in conjunction with

the Karhunen–Lo�eve–Galerkin method [11].
Inverse forced convection problems have received

more attention, certainly because of their greater sim-

plicity. The flow regime, laminar or turbulent, as well as

the flow geometry, do not have a priori any influence on

the inverse methodology to use. Conversely, the linearity

of the problem with respect to temperature is of

importance. If fluid properties vary with temperature,

the problem is nonlinear and iterative methods are re-

quired. If only the fluid thermal conductivity and specific

heat are temperature-dependent, the velocity field may

be calculated prior to the inverse problem concerned

with the nonlinear energy equation. If the fluid viscosity

or density changes with temperature, coupled mass

conservation, Navier–Stokes and energy equations have

to be considered. In the case of fluid properties supposed

independent of temperature, the velocity field may be

calculated and only the linear energy equation is con-

sidered in the inverse problem. Noniterative inversion

methods may then be employed.

In that last linear case, the most used method is

however iterative. It employs the conjugate gradient

method coupled with the resolution of direct, sensitivity

and adjoint problems [3,4].

Flows in parallel-plate ducts, with steady or unsteady

heat transfer, have been particularly studied, especially

in laminar regime. Following estimations may be re-

ported, using the previous methodology:

• spatial wall heat flux density [12],

• timewise inlet temperature from downstream mea-

surements [13],

• inlet temperature profile in steady regime [14],

• space and time varying wall heat flux density

[15],

• time varying wall heat flux density for nonnewtonian

fluid flow [16].
The estimation of time varying wall heat flux density

for a turbulent flow in parallel-plate duct from temper-

ature measurements in the fluid has also been performed

using the same method [17].

Simultaneous estimation of two space and time

varying wall heat flux densities in 2D irregularly shaped

channels has been performed employing the same

methodology [18].

A 3D problem concerning a flow in an irregular

shaped duct has been studied using the conjugate gra-

dient method [19]. The aim was to identify a timewise

wall heat flux density.

The Levenberg–Marquardt method has been used for

the estimation of spatial wall heat flux density for a

turbulent flow in a circular duct, in steady regime [20].

The simplex method has been employed to identify

spatial wall heat flux density for a laminar flow in par-

allel-plate duct, after reduction of the model size

through a singular perturbations method [21].

Surprisingly, noniterative methods have rarely been

used for linear problems. The explanation may be found

in the great generality of iterative methods. One can

notice that noniterative inversion of a state space rep-

resentation model has been employed to simultaneously

estimate inlet temperature and wall heat flux density for

a steady laminar flow in a circular duct [22].

Works connected with nonlinear Inverse forced

convection problems are quite uncommon. The estima-

tion of inlet temperature profile in steady laminar

polymer melt flow through a narrow channel [23]

where fluid properties strongly depend on temperature,

has been performed using successive approximations

method combined with Tikhonov’s regularization [24].

The case of a fluid whose thermal conductivity depends

on temperature, flowing in a parallel-plate duct, has also

been considered [25]. Authors employ the Karhunen–

Lo�eve–Galerkin method to build a Reduced Model used
through the conjugate gradient method to estimate a

spacewise wall heat flux density in steady regime.

In the present paper, a method for solving linear

transient inverse forced convection problems is pro-

posed. The inverse algorithm is noniterative, sequential,

and includes the function specification method [2]. The

main originality is the use of Reduced Models (RM) to

perform the inversion. The Modal Identification Meth-

od (MIM) [26,27] is used to build RMs. An illustrative

example is given, involving a turbulent flow in a parallel-

plate duct. Turbulent forced convection inside ducts is of

common use in heat exchangers. Such thermal equip-

ment is frequently subject to variation of wall heat fluxes

with time, that may induce undesirable thermal stresses.

Heat exchangers control is therefore an important

problem. In the proposed example, two time varying

wall heat flux densities, respectively applied on the upper

and lower plates of the duct, are simultaneously esti-

mated from the knowledge of temperature readings
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taken at specific locations inside the fluid. Estimations

obtained using RMs are compared to those obtained

using a classical Detailed Model (DM) of the system

built with the Finite Volume Method.

The following points will be developed:

• In Section 2, heat transfer modelling using state space

representation is introduced.

• In Section 3, solutions of direct and inverse problems

using DM are given.

• In Section 4, the Modal Identification Method

(MIM) used to build a RM of DM, is briefly pre-

sented.

• In Section 5, solutions of direct and inverse problems

using RM are developed.

• In Section 6, Future Time Steps [2] are introduced in

order to stabilize solutions.

• In Section 7, the system used as example is described,

governing heat transfer equation and associated

boundary conditions are written.

• In Section 8, studied configuration, sensitivity analy-

sis, inversion results and comparison between estima-

tions obtained using RM and DM, are presented.

• In Section 9, some conclusions and prospects are pro-

posed.
2. Heat transfer modelling using state space representa-

tion

Let us consider a linear thermal system. Whatever the

dimension of the problem, its geometry and the spatial

discretization method (finite differences, finite volumes,

finite elements, . . .), the energy equation and associated
boundary conditions can be written in the matrix form:

Ca
_hðsÞ ¼ KhðsÞ þ WðsÞ ð1Þ

where hðsÞ (dim.N ) is the vector function of tempera-
tures at the N discretization nodes, _hðsÞ its derivative
with respect to time s, Ca (dim.N ;N ) is the matrix of
thermal capacities, K (dim.N ;N) is the matrix of con-
ductances and WðsÞ (dim.N ) is the vector function
containing thermal inputs (boundary conditions and/or

internal heat sources) for each node of discretization.

By writing:
A ¼ C�1

a K
BW ðsÞ ¼ C�1

a WðsÞ

�
ð2Þ

Eq: ð1Þ becomes: _hðsÞ ¼ AhðsÞ þ BW ðsÞ ð3Þ

State matrix A (dim.N ;N ) links temperatures at dis-
cretization nodes and input matrix B (dim.N ; p) links
discretization nodes to thermal inputs gathered in vector

W (dim. p).
An output matrix C (dim. q;N ) allows to select q

temperatures in the whole temperature field and to store

them in vector function Y :
Y ðsÞ ¼ ChðsÞ ð4Þ

Eqs. (3) and (4) constitute a Detailed Model (DM) of

the system, called state space representation:

_hðsÞ ¼ AhðsÞ þ BW ðsÞ ð5aÞ
Y ðsÞ ¼ ChðsÞ ð5bÞ

3. Direct and inverse problems using DM

The direct problem consists in calculating h knowing
A and B (the model) as well as W (thermal inputs).

Output vector Y can then be extracted.
Time discretization (Ds being the time step) of Eqs.

(5a) and (5b) using a fully implicit scheme leads, at step

ðk þ 1Þ, to the linear relation between output vector
Y ðk þ 1Þ and input vector W ðk þ 1Þ:

ðI � ADsÞhðk þ 1Þ ¼ BDsW ðk þ 1Þ þ hðkÞ ð6aÞ
Y ðk þ 1Þ ¼ Chðk þ 1Þ ð6bÞ

The resolution of the direct problem can be done

using methods for solving linear systems, avoiding any

inversion of the dimension N matrix ðI � ADsÞ.
The inverse problem we consider consists in esti-

mating W , knowing A, B and some part Y of h. Rear-
ranging Eqs. (6a) and (6b), one obtains:

CDW ðk þ 1Þ ¼ Y ðk þ 1Þ � bDðkÞ ð7Þ

with CD ¼ CðI � ADsÞ�1BDs ð8Þ

and bDðkÞ ¼ CðI � ADsÞ�1hðkÞ ð9Þ

With the assumption that we have at least as many

sensors as unknowns ðqP pÞ, Eq. (7) may be solved for
W ðk þ 1Þ using linear least squares, to get an estimationbW ðk þ 1Þ of W ðk þ 1Þ:bW ðk þ 1Þ ¼ CTD � CD

� ��1
CTDðY ðk þ 1Þ � bDðkÞÞ ð10Þ
Remark. The inversion of a dimension N matrix is nee-
ded to compute CD and bDðkÞ (cf. Eqs. (8) and (9)), and
obtain this solution.
4. Model reduction using the Modal Identification Method

In order to avoid the inversion of a high dimension

matrix, we propose to use a low dimensional model, also

called Reduced Model (RM), whose behaviour is as

close as possible to DM (Eqs. (5a) and (5b)). The line-

arity of these equations allows us to apply the Modal

Identification Method [26,27]. It consists in an identifi-

cation procedure performed in one single step, which is

briefly presented hereafter and leads to the modal matrix

form:
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_X ðsÞ ¼ FX ðsÞ þ G _W ðsÞ ð11aÞ
Y ðsÞ ¼ HX ðsÞ þ SW ðsÞ ð11bÞ

X is a new state space vector of low dimension n
(n 	 N), F is a diagonal matrix containing n dominant
‘‘eigenvalues’’ of the system, _W is the derivative with

respect to time of input vector W . G is the input matrix.
Output vector Y is wanted to be very close to the one
defined by Eq. (5b). H and S are respectively called
output and static matrices. All the matrices included in

Eqs. (11a) and (11b) come from an identification proce-

dure (not a diagonalization) when decreasing unit steps

are applied separately and successively on each of the two

components of W . The procedure consists in minimizing
a squared residues functional relative to the difference

between an output vector simulated with DM (Eqs. (5a)

and (5b)) and the analytical output solution of Eqs.

(11a) and (11b).

Such Reduced Models have been used in previous

works to solve multidimensional direct and inverse lin-

ear heat conduction problems [27–31].

Thanks to its small order, computing time is strongly

reduced when using RM.
5. Direct and inverse problems using RM

An analytical solution of Eqs. (11a) and (11b) be-

tween time nodes k and k þ 1 leads to the following time
discretization [27]:

X ðk þ 1Þ
¼ expðF DsÞ½X ðkÞ þ GðW ðk þ 1Þ � W ðkÞÞ� ð12aÞ

Y ðk þ 1Þ
¼ HX ðk þ 1Þ þ SW ðk þ 1Þ ðdirect problemÞ ð12bÞ

Rearranging Eqs. (12a) and (12b), one obtains:

CRW ðk þ 1Þ ¼ Y ðk þ 1Þ � bRðkÞ ð13Þ

with CR ¼ H expðF DsÞG þ S ð14Þ

and bRðkÞ ¼ H expðF DsÞðX ðkÞ � GW ðkÞÞ ð15Þ

With the assumption that we have at least as many

sensors as unknowns ðqP pÞ, Eq. (13) may be solved for
W ðk þ 1Þ using linear least squares:

bW ðk þ 1Þ ¼ CTR � CR
� ��1

CTRðY ðk þ 1Þ � bRðkÞÞ
ðsolution of inverse problemÞ ð16Þ
Remark. In contrast to Eq. (10), no inversion of a

dimension N matrix is needed to obtain Eq. (16). The

matrix F being diagonal, CR (Eq. (14)) and bRðkÞ (Eq.
(15)) are easily computed.
6. Function specification method

Until now, it has been considered that at any time

step ðk þ 1Þ, heat fluxes sent through W ðk þ 1Þ have an
immediate influence on sensors, i.e. Y ðk þ 1Þ. That was
without taking into account the lagging and damping

effects of the heat transfer equation. In the present study

they are due essentially to the wall heat storage. As

W ðk þ 1Þ might have no real influence on Y ðk þ 1Þ, and
might be ‘‘seen’’ only at time step ðk þ 2Þ or later, it is
very useful to introduce Future Time Steps (FTS) [2],

that is: using sensors information at time steps ðk þ 2Þ;
ðk þ 3Þ; . . . ; to correctly estimate W ðk þ 1Þ. By using this
extra information, the function specification method

also acts as a regularization procedure which stabilizes

the solution. If nf is the number of FTS to be used, then

for 16 f 6 nf, Eq. (10) or Eq. (16) (depending on the

model which is used, DM or RM) is written for

W ðk þ 1þ f Þ and Y ðk þ 1þ f Þ. A temporary approxi-
mation of W ðk þ 1þ f Þ is needed to compute W ðk þ 1Þ.
The function specification method [2] is used, so it is

assumed that: W ðk þ 1þ f Þ ¼ W ðk þ 1Þ for 16 f 6 nf.

With a macrovector Y 0 ¼ ½Y ðk þ 1Þ; Y ðk þ 2Þ; . . . ;
Y ðk þ 1þ nfÞ�T, the nf þ 1 equations can be written
under a macrovector form either for DM and RM:

C0W ðk þ 1Þ ¼ Y 0 � b0ðkÞ ð17Þ

where matrix C0 and vector b0ðkÞ depend on the model
used for inversion (DM or RM).

The solution of Eq. (17) using linear least squares is

then given by:bW ðk þ 1Þ ¼ C0T � C0
� ��1

C0T Y 0�
� b0ðkÞ

�
ð18Þ

7. An illustrative example: turbulent forced convection in

parallel-plate duct

7.1. Description of the physical system and its mathemat-

ical model

Turbulent forced convection is considered, with a

hydrodynamically fully developed, thermally developing,

incompressible, turbulent flow of a newtonian and con-

stant property fluid inside a parallel-plate duct. Channel

walls are supposed to be smooth. Axial conduction in the

fluid and viscous dissipation are neglected. Conduction

along the flow in the wall material is disregarded. The

assumption of uniform wall temperature across the

whole thickness of the plates is made. A pseudo-laminar

model is taken as turbulent model.

Applied thermal boundary conditions are:

• uniform fluid inlet temperature Tin,
• two heat flux densities unðtÞ and usðtÞ applied on
external surface of channel plates, a priori different

and varying with time.
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Let us call L the channel length, b the half-height, e
the wall thickness, m the kinematic viscosity of the fluid,
k its thermal conductivity, a its thermal diffusivity,

ðqCpÞf and ðqCpÞs the volumic heat capacity respectively
for fluid and solid, UðyÞ the fully developed turbulent
velocity distribution, aturbðyÞ the turbulent diffusivity
distribution and T ðx; y; tÞ the mean statistic temperature
at position ðx; yÞ and time t. A schematic view of the
system is presented in Fig. 1.

Under previous hypothesis, the transient energy

equation may be written:

oT
ot

ðx; y; tÞ þ UðyÞ oT
ox

ðx; y; tÞ

¼ o

oy
aeffðyÞ

oT
oy

ðx; y; tÞ
� �

ð19Þ

8x 2�0; L½, 8y 2 ½�b;þb½, 8t > 0, and where the effective
diffusivity aeffðyÞ is the sum of the fluid thermal diffu-

sivity and the turbulent diffusivity aturbðyÞ:
aeffðyÞ ¼ a þ aturbðyÞ ð20Þ

Thermal boundary conditions associated with Eq.

(19) are written:
� T ð0; y; tÞ ¼ Tin; �b < y < þb; t > 0 ð21Þ

� kf
oT
oy

ðx;þb; tÞ ¼ unðtÞ � ðqCpÞse
oT
ot

ðx;þb; tÞ

8x 2 ½0; L�; 8t > 0 ð22Þ

� � kf
oT
oy

ðx;�b; tÞ ¼ usðtÞ � ðqCpÞse
oT
ot

ðx;�b; tÞ

8x 2 ½0; L�; 8t > 0 ð23Þ

Boundary conditions defined by Eqs. (22) and (23)

take into account both applied heat fluxes and wall heat

storage [32,33].
b

e

plates

fluid

y

x
)(yU

?)(tnϕ

ϕ ?)(ts

L

inT

Fig. 1. System description.
The initial condition is written :

T ðx; y; 0Þ ¼ Tin 8x 2 ½0; L�; 8y 2 ½�b;þb� ð24Þ

Eqs. (19)–(24) may be rewritten in dimensionless

form using the following quantities:

n ¼ 4x
bPe

; u ¼ U
Um

g ¼ y
b

and eeff ¼
aeff
a

¼ 1þ aturb
a

ðdimensionless effective diffusivityÞ

s ¼ at
b2

; h ¼ T � Tin
DTref

with

Pr ¼ m
a

Re ¼ UmDh
m

¼ 4bUm
m

Pe ¼ RePr ¼ UmDh
a

¼ 4bUm
a

8>>>>><>>>>>:
where Dh ¼ 4b ðhydraulic diameterÞ

Pr, Re and Pe are respectively Prandtl, Reynolds and
P�eclet numbers and Um is the fluid bulk mean velocity:

Um ¼ 1

2b

Z y¼b

y¼�b
uðyÞdy ð25Þ

A reference temperature difference is arbitrarily taken

as DTref ¼ 10 K (corresponding to the maximal tem-

perature elevation for which the linearity assumption is

considered to be valid).

The dimensionless energy equation is written as fol-

lows:

oh
os

ðn; g; sÞ þ uðgÞ oh
on

ðn; g; sÞ ¼ o

og
eeffðgÞ

oh
og

ðn; g; sÞ
� �

80 < n < ‘; �1 < g < þ1; s > 0 ð26Þ

where ‘ ¼ 4L
bPe is the dimensionless channel length.

UðsÞ ¼ uðtÞb
kfDTref

is a dimensionless heat flux density and

c� ¼ ðqCpÞse
ðqCpÞfb

is the solid-to-fluid thermal capacitance ratio.

Thermal boundary conditions associated with Eq.

(26) are written, from Eqs. (21)–(23):
� hð0; g; sÞ ¼ 0; �1 < g < þ1; s > 0 ð27Þ

� oh
og

ðn;þ1; sÞ ¼ UnðsÞ � c�
oh
os

ðn;þ1; sÞ

8n 2 ½0; ‘�; 8s > 0 ð28Þ

� � oh
og

ðn;�1; sÞ ¼ UsðsÞ � c�
oh
os

ðn;�1; sÞ

8n 2 ½0; ‘�; 8s > 0 ð29Þ
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The initial condition is written from Eq: ð24Þ :
hðn; g; 0Þ ¼ 0 8n 2 ½0; ‘�; 8g 2 ½�1;þ1� ð30Þ

Distributions of dimensionless fully developed tur-

bulent velocity uðgÞ and dimensionless total diffusivity
eeffðgÞ in Eq. (26) are determined by the turbulent model
given in [34], except for the turbulent Prandtl number:

Prturb ¼ mturb
aturb

(mturb being the eddy viscosity), taken as:

Prturb ¼ 0:85þ 0:015
Pr [35].

7.2. Numerical simulation of temperature measurements

Eq. (26) being linear and parabolic in n, it is possible
to solve Eqs. (26)–(30) using a sequential procedure in n.
Let us call Nn and Ng the numbers of discretization nodes

along the n and g directions respectively. Nn problems of

order Ng are successively solved (at all time steps) in-

stead of a single problem of order N ¼ Nn � Ng. Using

the Finite Volume Method to discretize Eqs. (26)–(29),

these problems may be written under state space repre-

sentation:

_hiðsÞ ¼ AShiðsÞ þ BS
hi�1ðsÞ
W ðsÞ

� �
8i 2 h1;Nni ð31Þ

where hi (dim.Ng) is the vector function of dimensionless

temperatures at the Ng discretization nodes of the ith
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Fig. 2. Test functions
channel elementary section, all components of vector h0
being equal to the dimensionless inlet temperature

according to Eq. (27). _hiðsÞ is the derivative with respect
to time of hiðsÞ and W ðsÞ ¼ UnðsÞ UsðsÞ½ �T (dim. 2) is
the heat flux density input vector function containing

UnðsÞ and UsðsÞ. AS (dim.Ng;Ng) and BS (dim.Ng,2) are

respectively the state and input matrices relative to a

channel elementary section whose length is:

Dn ¼ ‘

ðNn � 1Þ

According to a mesh sensitivity analysis, a nonregu-

lar mesh along the g direction (refined near walls) using
Ng ¼ 25 for each channel section, and a regular mesh
along the n direction using Nn ¼ 100 for the whole duct

length (L ¼ 200b ¼ 50Dh i.e. n ¼ 800=Pe), have been
chosen. Nn is adapted to solve the problem for a portion

of the channel length: for instance, to solve up to

x ¼ 5Dh i.e. n ¼ 80=Pe, Nn ¼ 10.
Dt ¼ 10 s is used as time step. The dimensionless

time step is therefore Ds ¼ 0:09. 100 time steps are used.
The same time step will be employed for the inverse

problem.

Functions UnðsÞ and UsðsÞ shown in Fig. 2 are used
as test functions. The direct problem is solved with these

input signals to simulate temperature evolutions. These
nless time
5 6 7 8               9

Phi North
Phi South

UnðsÞ and UsðsÞ.



Table 1

Sensors names and locations

g ¼ y=b nPe=16 ¼ x=Dh

5 10 20 30 40 50

0.9 P0 P1 P2 P3 P4 P5
0.7 M0 M1 M2 M3 M4 M5

)0.7 M0
0 M0

1 M0
2 M0

3 M0
4 M0

5

)0.9 P00 P01 P02 P03 P04 P05

Fig. 4. Simulated temperature measurements at P0 (x ¼ 5Dh;
y ¼ þ0:9b), P00 (x ¼ 5Dh; y ¼ �0:9b), P5 (x ¼ 50Dh; y ¼ þ0:9b),
P05 (x ¼ 50Dh; y ¼ �0:9b).
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response signals will be perturbed with an additive

numerical random noise to simulate real measurements

to be used as data for the inverse problem.

A set of points in the fluid domain is defined in Table

1 and shown in Fig. 3, with their names and locations.

They constitute possible sensor locations for the inverse

problem.

Figs. 4 and 5 show simulated temperature measure-

ments at P0, P
0
0, P5, P

0
5 and M0, M

0
0, M5, M

0
5 respectively,

when random gaussian noise is added to ‘‘exact values’’

obtained by the direct problem resolution. For a discrete

temperature evolution T containing the initial tempera-
ture and nt time steps, one has:

Ti ¼ T exacti þ xi
r�

DTref
¼ T exacti þ DTi

DTref
8i 2 h0; nti

where r� is the dimensional standard deviation of mea-

surement errors which is assumed to be the same for all

measurements and fxig is a gaussian random distribu-
tion of mean value 0 and variance 1. That means there is

a 99% probability of the value for xi to be in the range

�2:576 < xi < þ2:576, hence r� ¼ 3:88� 10�2 K cor-

responds to �0:1 K < DTi < þ0:1 K.

7.3. Inverse problem

The inverse problem we consider consists in esti-

mating W ðsÞ ¼ UnðsÞ UsðsÞ½ �T from the knowledge of
some part of the set of simulated transient temperature
Fig. 3. Sensors location.

Fig. 5. Simulated temperature measurements at M0 (x ¼ 5Dh;
y ¼ þ0:7b), M0

0 (x ¼ 5Dh; y ¼ �0:7b), M5 (x ¼ 50Dh; y ¼
þ0:7b), M0

5 (x ¼ 50Dh; y ¼ �0:7b).
measurements previously defined in Section 7.2 (see

Table 1 and Fig. 3).



Table 2

Estimation results for different inversion cases (noise r ¼ r�=DTref ¼ 3:88� 10�3)
Sensors number and position Model and value of nf rY rW C0T � C0 condition

number

2, P0 and P
0
0 DM (order 250) nf ¼ 2 3.915· 10�3 7.572 1.0004

2, P0 and P
0
0 RM (order 4) nf ¼ 2 3.918· 10�3 7.637 1.0004

2, P5 and P
0
5 DM (order 2500) nf ¼ 2 5.134· 10�3 4.458 1.4981

2, P5 and P
0
5 RM (order 8) nf ¼ 2 5.137· 10�3 4.604 1.5010

10, P1 to P5 and P
0
1 to P

0
5 DM (order 2500) nf ¼ 1 3.928· 10�3 3.369 1.2458

10, P1 to P5 and P
0
1 to P

0
5 RM (order 16) nf ¼ 1 3.932· 10�3 3.455 1.2440

2, M0 and M
0
0 DM (order 250) nf ¼ 4 4.200· 10�3 11.327 1.0033

2, M0 and M
0
0 RM (order 12) nf ¼ 4 4.200· 10�3 11.450 1.0033

2, M5 and M
0
5 DM (order 2500) nf ¼ 2 4.559· 10�3 5.252 2.0495

2, M5 and M
0
5 RM (order 17) nf ¼ 2 4.558· 10�3 5.362 2.0491

10, M1 to M5 and M
0
1 to M

0
5 DM (order 2500) nf ¼ 2 4.389· 10�3 3.984 1.5920

10, M1 to M5 and M
0
1 to M

0
5 RM (order 8) nf ¼ 2 4.393· 10�3 4.138 1.5918
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It seems not possible to solve the inverse problem for

the estimation of UnðsÞ and UsðsÞ by using successive
equations (31) without employing an iterative proce-

dure. Let us consider temperature data in the ith channel
section. The inversion of the corresponding Eq. (31)

requires the knowledge of all temperatures in the i � 1th
section. But these temperatures can only be calculated if

UnðsÞ and UsðsÞ and temperatures in the i � 2th section
are known. One understands that two ways may be

chosen to realize the inversion with a Detailed Model.

The first one consists in the use of an iterative method

with a sequential procedure in n at each iteration:

starting with initial guesses Un0ðsÞ and Us0ðsÞ, Eqs. (31)
are successively solved to compute temperatures at data

locations in the ith channel section; the discrepancy
between computed and ‘‘measured’’ temperatures can

then be minimized using the conjugate gradient method,

for example.

The second one, which is used in this paper, is to

perform a noniterative procedure, global in n. If the
Finite Volume Method is used to discretize Eqs. (26)–

(29), the problem of order N ¼ Nn � Ng may be written

under state space representation in the form of Eqs. (5a)

and (5b):

_hðsÞ ¼ AhðsÞ þ BW ðsÞ
Y ðsÞ ¼ ChðsÞ

�
h (dim.N ) is the vector function of dimensionless tem-
peratures at the N discretization nodes, _h its derivative
with respect to dimensionless time s. A is (N ;N) and B is
(N ; 2). The noniterative approach presented in Section 3
can then be applied to solve the inverse problem. The

reduction method described in Section 4 can also be

applied to this DM.

The location of sensors along the channel axis plays

an important role: the order of the DM used for inversion

increases with respect to the position of sensors in down-

stream direction. In fact, two DMs of the form ((5a) and

(5b)) have been used:
• The first one is relative to cases where sensors abscis-

sa is up to x ¼ 5Dh. Only the corresponding part of
the channel is used: Nn ¼ 10 and the model order is
N ¼ 250.

• The second one is relative to cases where sensors ab-

scissa is up to x ¼ 50Dh ¼ L. The whole heated chan-
nel is used. Nn ¼ 100 and the model order is therefore
N ¼ 2500.

In contrast to DM, RM is no longer expressed in the

physical base of temperatures but in a modal base (cf.

Section 4), hence its order does not necessary increase

with respect to the position of sensors in downstream

direction. Nevertheless, several RMs have been built,

each one corresponding to a specific case of sensor

locations (cf. Section 8.3, Table 2).
8. Inversion results and analysis

8.1. Studied configuration

The following case is considered: air is entering the

channel at Tin ¼ 300 K. Fluid properties are then taken

as: qf ¼ 1:16 kgm�3, Cpf ¼ 1007 J kg�1 K�1, kf ¼ 2:63�
10�2 Wm�1 K�1, m ¼ 1:59� 10�5 m2 s�1.
Solid properties are taken as: qs ¼ 7900 kgm�3,

Cps ¼ 477 J kg�1 K�1, ks ¼ 14:9 Wm�1 K�1.

The channel half-height is b ¼ 5� 10�2 m, the
channel length L ¼ 10 m. The wall thickness is e ¼
2� 10�3 m. The Reynolds number is Re ¼ 105, thus
corresponding to Um ¼ 7:9 m s�1.

8.2. Sensitivity analysis

Let us consider Eq. (13) with the definition of matrix

CR (Eq. (14)). One may define static and dynamic

dimensionless sensitivities relative to the unknown Un by
matrices S and CR ¼ H expðFDsÞG þ S respectively.
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Dynamic sensitivities are lower than static sensitivities

[28]. Sensitivities relative to Us can be deduced consid-
ering channel axis symmetry.

Static matrix S is conserved through the MIM: RM
static sensitivities (Fig. 6) are hence equal to DM ones.

RM dynamic sensitivities (Fig. 7) are not exactly equal

to DM ones, but the values are however similar and the

analysis is qualitatively analogous. In Figs. 6 and 7, one

has, from left to right: (d): P0 to P5; (n): M0 to M5; (N):

M0
0 to M

0
5; (r): P

0
0 to P

0
5.

One may formulate some comments from Figs. 6 and

7 (a similar analysis may be conducted with static sen-

sitivities):

• For a fixed ordinate g ¼ y=b in the fluid, sensitivities
increase with the abscissa x=Dh. In fact, a point in the
flow is not affected by the part of wall heat flux den-

sity applied downstream to that point. Hence, the

farther from the inlet the sensor is, the more thermal

information it gets.

• For a fixed abscissa x=Dh, sensitivities increase when
the distance from the wall subjected to the boundary

condition decreases (Un in the considered case). Sen-
sitivities associated with sensors located near the

opposite wall are of course weak. By symmetry, they

are high relatively to the other boundary condition

Us. As a consequence, employing two sensors (or
groups of sensors), each one close to a particular

wall, will provide a rather decoupled estimation.
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• When the inversion is carried out using two sensors,

the condition number of matrix CTRCR of Eq. (16) is
better if sensors have the same abscissa and symmet-

ric ordinates, as it can be seen below:

� Let us consider points P0 and M
0
0 (same abscissa

but nonsymmetric ordinates). The dynamic sensi-

tivity matrix is written:

CR ¼
sP0=Un sP0=Us
sM0

0
=Un sM0

0
=Us

" #

¼
1:59� 10�4 1:39� 10�8

4:68� 10�8 5:64� 10�5

� �
so CTRCR ¼

2:53� 10�8 4:85� 10�12

4:85� 10�12 3:18� 10�9

� �
CTRCR condition number is therefore equal to 7.95.

This condition number is defined as
maxi li CT

R
CRð Þj j

mini li CT
R

CRð Þj j
where the li CTRCR

� �
are the eigenvalues of matrix

CTRCR.
� Let us now consider points P0 and P

0
5 (symmetric

ordinates but different abscissas). The dynamic

sensitivity matrix is written:

CR ¼
sP0=Un sP0=Us
sP0
5
=Un sP0

5
=Us

" #

¼
1:59� 10�4 1:39� 10�8

3:32� 10�5 3:45� 10�4

� �
so CTRCR ¼

2:64� 10�8 1:15� 10�8

1:15� 10�8 1:19� 10�7

� �
CTRCR condition number is now equal to 4.82.
� Finally, lets us take P0 and P

0
0 (same abscissa and

symmetric ordinates). The dynamic sensitivity ma-

trix is written:

CR ¼
sP0=Un sP0=Us
sP0
0
=Un sP0

0
=Us

" #

¼ 1:59� 10�4 1:39� 10�8

1:39� 10�8 1:59� 10�4

� �
so CTRCR ¼ 2:53� 10�8 4:42� 10�12

4:42� 10�12 2:53� 10�8

� �
CTRCR condition number is now very close to 1

(1.0004), which is the best one.

When moving down to the channel inlet, the third

remark has less significance because sensitivity of each

point relative to the boundary condition applied on

opposite wall increases. However, condition numbers

remain low (from 1.5 to 2 in x ¼ 50Dh, cf. Section 8.3,
Table 2), and as sensitivities are higher, the estimation

quality is improved.
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8.3. Estimation results and comments

First, let us introduce the dimensionless mean qua-

dratic error on estimated inputs rW between W exactðsÞ
and bW ðsÞ, where W exact is the exact input vector and bW
is the vector of the estimated inputs obtained by inver-

sion with DM or RM. The lower rW is, the better the

inversion is.

rW ¼ 1

2ðnt� nf þ 1Þ
X2
i¼1

Xnt�nf
j¼0

bWiðsjÞ
�"

�W exact
i ðsjÞ

�2#1=2
ð32Þ

where nt is the number of time steps.

In the same way, the dimensionless mean quadratic

error on temperatures rY between Y measðsÞ and bY ðsÞ,
where Y meas is the vector of temperature measurements
and bY is the vector of the temperatures calculated with
the identified inputs, can be written as:

rY ¼ 1

qðnt� nf þ 1Þ
Xq

i¼1

Xnt�nf
j¼0

bYiðsjÞ
�"

� Y measi ðsjÞ
�2#1=2

ð33Þ

Note that because of the ill-posed nature of inverse

problems, rY can be very small even with very bad
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flux densities and estimated ones.
identification results, i.e. with a very large rW . That is

why regularization techniques have to be employed, in

order to stabilize the solutions. In real cases, rW is of

course unknown since W is really unknown, so only rY is

available in practical applications.

The inverse problem resolution using exact data

(r� ¼ 0 K) gives very good results without any regular-
ization (nf ¼ 0) and whatever the sensors number and
their positions and whatever the model, DM or RM.

Figs. 8 and 9 show discrepancies between exact heat flux

densities Un and Us and estimations obtained respec-
tively with DM (order N ¼ 250) and RM (order n ¼ 12),
from data at M0 and M

0
0, corresponding to the most

difficult case (see sensitivities on Figs. 6 and 7). Fig. 10

shows estimations obtained with RM. As RM does not

contain all the spectral information of DM, estimations

using RM are less accurate than those coming from DM

when using exact data. Dimensionless mean quadratic

errors are respectively rY ¼ 2:11� 10�17 and rW ¼
7:19� 10�6 for DM and rY ¼ 8:44� 10�16 and rW ¼
0:731 for RM.
Inversion results using noised data (r� ¼ 3:88� 10�2

K i.e. r ¼ r�=Tref ¼ 3:88� 10�3 using DTref ¼ 10 K
according to Section 7.1) are summarized in Table 2.

The most difficult case using two sensors at M0 and

M0
0 is presented in Figs. 11 (DM, order 250) and 12
nless time
5 6 7 8               9

th exact - Phi North estimated
th exact - Phi South estimated

DM (order 250) with nf ¼ 0. Discrepancies between exact heat
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(RM, order 12): four FTS are required (i.e. nf ¼ 4) and
estimations still exhibit large oscillations.

Estimations obtained using 10 sensors at M1 to M5

and M0
1 to M

0
5 are shown in Figs. 13 (DM, order 2500)

and 14 (RM, order 8): the inverse problem is over-

determined and better estimations are obtained using

only nf ¼ 2.
The function specification method (cf. Section 6),

taking into account ‘‘Future Time Steps’’, has been

employed. The number nf of FTS used has been deter-

mined to satisfy the discrepancy principle, stipulating

that rY should be close to the standard deviation r
[4,36]. nf has been incremented from zero to the first

value giving rY � r and rY Pr. In the studied cases, if
the next value of nf is used, rY increases and is no more

close to r. Of course, the procedure to determine nf is
much faster and easier with RM than with DM.

Remark. Although the inverse problem is solved

sequentially in time, the standard deviation of mea-

surement errors r is a whole time domain information.
Therefore, the value of nf can only be determined by

comparing global quantities rY and r, as in [27,36] for
example. RMs allow to perform very fastly the nf þ 1 (0
to nf) resolutions leading to the determination of nf.
Results from Table 2 can be analysed:

• Future Time Steps

If no FTS are required with exact data, several FTS

are needed when noise is added.

• Comparison between DM and RM

For a given data set, solving the inverse problem

with RM requires as many FTS as with DM. Esti-

mations obtained with both models are very close,

slightly better with DM (cf. rW values). rY values are

quasi-identical. These remarks attest the robustness of

the inversion employing RM. It is important to note

that instabilities are not due to RM. The same insta-

bilities are obtained with DM. This is classically ob-

served when using sequential methods instead of whole

time domain methods. The latter generate less insta-

bilities but require more CPU time and memory size

and hence are not well adapted for control command.

Moreover, the use of RM allows a drastic reduction of

computing time. As an example, for the case of 10

sensors M1 to M5 and M
0
1 to M

0
5, computing time is

0.07 s CPU using an RM of order 8 and 457 s CPU

using the DM of order 2500, resulting in a reduction

factor 6500. This factor goes up to 11,000 for other

cases.
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Fig. 10. Inversion using two sensors at M0 and M
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0 (‘‘exact’’ data) and RM (order 12) with nf ¼ 0.
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Fig. 12. Inversion using two sensors at M0 and M
0
0 and RM (order 12) with nf ¼ 4.

Dimensionless time

D
im

en
si

on
le

ss
 h

ea
t f

lu
x 

de
ns

ity

0 1 2 3 4 5 6 7 8               9
-10

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

Phi North  exact
Phi South exact

Phi North  estimated
Phi South estimated

Fig. 13. Inversion using 10 sensors at M1 to M5 and M
0
1 to M

0
5, and DM (order 2500) with nf ¼ 2.

3922 M. Girault, D. Petit / International Journal of Heat and Mass Transfer 47 (2004) 3909–3925



Dimensionless time

D
im

en
si

on
le

ss
 h

ea
t f

lu
x 

de
ns

ity

0 1 2 3 4 5 6 7 8               9
-10

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

Phi North  exact
Phi South exact

Phi North  estimated
Phi South estimated

Fig. 14. Inversion using 10 sensors at M1 to M5 and M
0
1 to M

0
5, and RM (order 8) with nf ¼ 2.

M. Girault, D. Petit / International Journal of Heat and Mass Transfer 47 (2004) 3909–3925 3923
• Effect of sensor positions along the channel axis

For temperature data collected at a given depth in the

fluid, estimations obtained with two sensors at abscissa

x ¼ 5Dh are less accurate than those obtained with two
sensors at abscissa x ¼ 50Dh. In the first case, sensitivi-
ties are weak (cf. Figs. 6 and 7) and the signal/noise ratio

is small (cf. Figs. 4 and 5). In the second case, sensitiv-

ities are higher (cf. Figs. 6 and 7) and the signal/noise

ratio is larger considering the same additive noise (cf.

Figs. 4 and 5). As previously mentioned, one of the RM

advantages is that the order of the model used for

inversion is not linked to sensor axial positions.

• Effect of sensor positions along the transverse direc-

tion

For temperature data collected at given axial posi-

tions, estimations obtained with sensors located in

y ¼ �0:9b are better than those obtained with sensors
positioned in y ¼ �0:7b. This is in agreement with sen-
sitivity analysis (cf. Figs. 6 and 7). Moreover, the farther

from walls the sensors are, the more FTS have to be used

in order to increase sensitivities.

• Effect of the number of sensors

For data collected at a given depth in the fluid, the

estimation quality is of course improved by using 10

sensors instead of 2: the inverse problem is overdeter-

mined.
• Condition number of matrix C0T � C0

For each inversion case, condition numbers respec-

tively relative to DM and RM are almost identical. This

tends to prove RM robustness. Furthermore, condition

numbers are close to 1, hence no regularization is needed.
9. Conclusions and prospects

In this paper, an inversion method using Reduced

Models has been presented. The proposed approach can

be applied to linear thermal systems. An example of

transient turbulent forced convection inside a parallel-

plate duct has been investigated. The objective was to

simultaneously estimate two time varying wall heat flux

densities.

The direct problem is formulated in the state space

representation, expressing the linear relationship be-

tween unknown inputs and temperature readings taken

inside the fluid. The inverse problem may then be solved

sequentially by a simple linear least squares method.

There is no need of using an iterative method such as

conjugate gradient or Levenberg–Marquardt method.

No initial guess is needed. Moreover, according to the

linearity of the governing equation, the Modal Identifi-

cation Method is applied to build a low order model or
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Reduced Model (RM), whose behaviour is very close to

the original Detailed Model (DM) of the system.

It has been underlined that contrasting with DM,

RM is not expressed in the physical base of temperatures

but in a modal base. As a consequence, the order of the

RM used for inversion is independent of sensor axial

positions, which is not the case with DM in the pre-

sented example where axial diffusion is neglected. One

should note that the advantage provided by RM is more

obvious if axial diffusion is taken into account, since

DM order is in that case always equal to N ¼ 2500 (N
being the number of DM discretization nodes), whatever

the sensor positions.

It has also been shown that as opposed to DM, no

inversion of a dimension N matrix was needed to obtain
the inverse problem solution with RM.

With such a RM, inversion computing time is drasti-

cally reduced (with a reduction factor up to 11,000 in this

study) as well as model size, without significant loss of

accuracy. Such procedure could be then well adapted to

control command processes. It should be underlined that

a RM identification requires no more than a few dozens

of seconds of CPU time, and once the RM is obtained, it

can be used to perform as many inversions as necessary,

whatever the functional form of the signal to estimate.

Moreover, although several RMs have been built accord-

ing to selected sensors, it is possible to build a single RM

relative to the set of 20 sensors, and to use it for each

inversion case, with very limited loss of accuracy.

Future developments include the identification of

space and time varying boundary conditions, which

occur when heat fluxes are nonuniform along the channel

length. The present methods (reduction and inversion)

can be applied to other duct shapes and to 3D problems,

whatever the geometry, as far as they are linear. The

method may then be used to analyse inverse heat con-

vection in a circular duct asymmetrically heated, but can

also be applied to irregularly shaped channels.

In particular, it is possible to identify RMs from

simulations made with commercial modelling softwares

that are closed for users. In that case, the inverse

problem can be solved using RM while it can be very

difficult, or impossible, to perform the inversion using

the commercial software.

Moreover, the Modal Identification Method can be

applied to real data instead of DMs simulations,

allowing to perform experimental modelling [29]. The

knowledge of a DM is therefore no longer required.

Finally, an extension of the approach to nonlinear

systems is under development.
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